"Pharm-ecology" of diet shifting: biotransformation of plant secondary compounds in creosote (Larrea tridentata) by a woodrat herbivore, Neotoma lepida.
نویسندگان
چکیده
Diet switching in mammalian herbivores may necessitate a change in the biotransformation enzymes used to process plant secondary compounds (PSCs). We investigated differences in the biotransformation system in the mammalian herbivore, Neotoma lepida, after a radical shift in diet and secondary compound composition. Populations of N. lepida in the Mojave Desert have evolved over the past 10,000 years to feed on creosote (Larrea tridentata) from an ancestral state of consuming juniper (Juniperus osteosperma). This dietary shift represents a marked change in the dietary composition of PSCs in that creosote leaves are coated with phenolic resin, whereas juniper is high in terpenes but lacks phenolic resin. We quantified the enzyme activity of five major groups of biotransformation enzymes (cytochrome P450s, NAD(P)H:quinone oxidoreductase, glutathione conjugation, sulfation, and glucuronidation) recognized for their importance to mammalian biotransformation for the elimination of foreign compounds. Enzyme activities were compared between populations of Mojave and Great Basin woodrats fed control and creosote diets. In response to creosote, the Mojave population had greater levels of cytochrome P450s (CYP2B, CYP1A) and glutathione conjugation liver enzymes compared with the Great Basin population. Our results suggest that elevated levels of cytochrome P450s and glutathione conjugation enzymes in the Mojave population may be the underlying biotransformation mechanisms that facilitate feeding on creosote.
منابع مشابه
The draft genome sequence and annotation of the desert woodrat Neotoma lepida
We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida). This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata) and the juniper shrub (Juniperus monosperma). The draft...
متن کاملAmbient temperature influences tolerance to plant secondary compounds in a mammalian herbivore.
Growing evidence suggests that plant secondary compounds (PSCs) ingested by mammals become more toxic at elevated ambient temperatures, a phenomenon known as temperature-dependent toxicity. We investigated temperature-dependent toxicity in the desert woodrat (Neotoma lepida), a herbivorous rodent that naturally encounters PSCs in creosote bush (Larrea tridentata), which is a major component of ...
متن کاملExperience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.
For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compare...
متن کاملCytochrome P450 2B Diversity and Dietary Novelty in the Herbivorous, Desert Woodrat (Neotoma lepida)
Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compo...
متن کاملExpression of biotransformation genes in woodrat (Neotoma) herbivores on novel and ancestral diets: identification of candidate genes responsible for dietary shifts.
The ability of herbivores to switch diets is thought to be governed by biotransformation enzymes. To identify potential biotransformation enzymes, we conducted a large-scale study on the expression of biotransformation enzymes in herbivorous woodrats (Neotoma lepida). We compared gene expression in a woodrat population from the Great Basin that feeds on the ancestral diet of juniper to one from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological and biochemical zoology : PBZ
دوره 81 5 شماره
صفحات -
تاریخ انتشار 2008